
CLINICAL QUALITY
MEASURE LOGIC AND
IMPLEMENTATION
GUIDANCE

Implementing Computation of Specific
Occurrences

March 22, 2013

Approved for Public Release; Distribution Unlimited. 13-1264
© 2013 The MITRE Corporation. All rights reserved

ii

This page intentionally left blank.

Approved for Public Release; Distribution Unlimited. 13-1264
© 2013 The MITRE Corporation. All rights reserved

iii

Table of Contents
1	 Purpose ... 1-1	
2	 Implementing Computation of Specific Occurrences .. 2-2	

Approved for Public Release; Distribution Unlimited. 13-1264
© 2013 The MITRE Corporation. All rights reserved

iv

This page intentionally left blank.

Approved for Public Release; Distribution Unlimited. 13-1264
© 2013 The MITRE Corporation. All rights reserved

1-1

1 Purpose
Implementing specific occurrences is by far the most complex aspect of correctly implementing
the electronic Clinical Quality Measures (eCQMs) included in the Electronic Health Record
Incentive Program- Stage 2, also known as meaningful use of health information technology
(MU2). Implementation guidance available from the Centers for Medicare and Medicaid
Services (CMS) website, in conjunction with the documentation of the Quality Data Model
(QDM) available from the National Quality Forum (NQF), provides high-level insights into
evaluation of QDM logic that incorporates the specific occurrence construct.

Cypress is the certification testing tool for evaluating the accuracy of clinical quality measure
calculations in electronic health record (EHR) systems. Specifically, the Office of the National
Coordinator for Health Information Technology (ONC) designated Cypress as the official testing
tool for clinical quality for the 2014 Electronic Health Record (EHR) Certification program for
MU2 eCQMs. Cypress has implemented a general implementation of specific occurrences that
handles the logic found in the MU2 eCQMs, as well as any well-formed logic that can be
produced by the current version of the CMS Measure Authoring Tool. Cypress evaluates the
MU2 eCQMs using this general framework. This document describes the approach taken within
Cypress to consistent evaluation of specific occurrences.
 	

Approved for Public Release; Distribution Unlimited. 13-1264
© 2013 The MITRE Corporation. All rights reserved

2-2

2 Implementing Computation of Specific Occurrences

This document provides detailed guidance for software developers regarding implementation of
specific occurrence evaluation in EHR technologies. This implementation guidance covers the
general implementation for specific occurrences, which can be contrasted with the case-by-case
implementation. The general implementation of specific occurrences is based on the constructs
as defined by the underlying QDM infrastructure. The case-by-case implementation would be a
translation of the QDM operators into logic that calculates a particular block of logic in an
equivalent manner. For instance section 4.1 illustrates the use of specific occurrences to provide
an “overlap” comparison. Implementing an “overlap” method directly rather than relying on
specific occurrences for the calculation is a significantly simpler approach. However, the
general solution, although complex, is required for automated consumption of eMeasure
specifications. The source code for the general implementation of specific occurrences described
below is available at:

https://github.com/pophealth/hqmf2js/blob/master/app/assets/javascripts/specifics.js.coffee

The generalized implementation of specific occurrences is based on the core concept that
specific occurrences represent a single instance of an event, and all the logic of the measure must
hold for that single event. Furthermore measures can reference multiple specific occurrences of
the same type or of different types.

Based on this definition of specific occurrences, a direct method of exhaustion for
implementation of specific occurrences within the CQMs would appear as the following:

Foreach occurrence_a_of_x in patient.getX()
 Foreach occurrence_b_of_x in patient.getX()
 Foreach occurrence_a_of_y in patient.getY()
 …
 Execute measure logic using each instance
 …

This approach is a good starting point for understanding the final implementation of specific
occurrences, but is extremely inefficient and does not provide a reliable calculation (discussed in
the next paragraph). However, it is a simplified illustration of what specific occurrences are
trying to calculate. The above logic would nest the iteration of each specific occurrence
referenced by a measure and would evaluate the measure against every combination of specific
occurrences. Each execution of the measure logic in the innermost loop would have a single
event tied to each specific occurrence. In effect a “tuple” would be created by the innermost
iteration. That tuple when evaluated against the measure logic would produce a true or false
value. A true value would indicate that the specific combination of event instances tied to the
various specific occurrences passed the measure logic. Collecting the passing tuples would
provide the joint combinations of specific occurrences that evaluate to true for that measure and
patient.

Approved for Public Release; Distribution Unlimited. 13-1264
© 2013 The MITRE Corporation. All rights reserved

2-3

The issue with this simplified approach to calculation is the use of subset operators with specific
occurrences. This approach resolves each specific occurrence referenced by the measure before
the inception of calculation. Unfortunately this does not work well when calculating subset
operators against specific occurrences. If a measure is looking for the first specific occurrence
during the measurement period, or the most recent specific occurrence that start before another
event, resolving the specific occurrences ahead of time to a single instance makes evaluating the
set operators (first, most recent, etc.) difficult. Therefore, the nested iteration of each specific
occurrence, does not work well.

Instead, the approach taken by Cypress is to evaluate specific occurrence clauses to produce a set
of candidate values. These candidate values can then be intersected across logical AND
statements and unioned across OR statements.

This approach requires maintaining a “Specific Context”. The specific context is generated as
the result of a QDM statement (e.g., Occurrence A of Encounter X during the Measurement
Period). The specific context is a table with a column for each specific occurrence referenced
within the measure, and each row represents a tuple of specific occurrence instances that
evaluate to true at a given point of evaluation. When a QDM statement references multiple
specific occurrences (e.g., Occurrence A of X starts before the start of Occurrence A of Y) the
tuples in the specific context represent the combination of specific occurrence instances that
evaluate to true for the logic. However, in addition to the referenced specific occurrences, the
specific context tuples also have columns for specific occurrences that are not referenced in the
statement. This is required because a tuple in a specific context represents the viable values
across all specific occurrences, whether the statement has referenced them or not. When a
specific occurrence is not referenced in a statement, all values are viable for the unreferenced
specific occurrence. In other words, the result is the Cartesian product between the rows
resulting from the specific occurrences referenced by the statement and all values of the
unreferenced specific occurrences. This implementation uses an ANY indicator in order to
represent that all values for an unreferenced specific occurrence are viable. The ANY indicator
used is the ‘*’ character and it both helps to eliminate the need to calculate the Cartesian product,
but it is also useful in the calculation of negated logical statements (described below).

Therefore, every QDM statement has an associated specific context. These specific contexts are
generated independently from each other (i.e., a logical statement does not depend on the result
of another logical statement for calculation). The results of each QDM statement are evaluated
logically through the use of AND and OR statements. As the AND and OR statements are
evaluated the specific contexts generated from each statement are intersected across ANDs and
unioned across ORs as the calculation progresses up the logical tree.

The process for intersecting specific contexts is to compare each tuple from the first specific
context against all the tuples in the second context. Tuple comparisons are conducted by
comparing each column (or specific occurrence instance) in the first tuple with the corresponding
column in the second tuple. If each column refers to the same specific occurrence instance, or if
one of the columns contains an ANY indicator, the tuples are equal and are added to the result

Approved for Public Release; Distribution Unlimited. 13-1264
© 2013 The MITRE Corporation. All rights reserved

2-4

context. If one of the columns contains an ANY indicator, the intersected tuple should contain
the reference to the specific occurrence instance rather than the ANY indicator.

The process for unioning specific contexts is simply to add all the tuples from each of the
specific contexts being unioned to the result specific context.

Negated statements are calculated by first calculating the specific context for the positive
statement. Once the specific context has been calculated, a specific context containing the
Cartesian product across all values of all specific occurrences is calculated. Then to negate the
positive specific context it is subtracted from the Cartesian product specific context. This
calculation results in a specific context containing all the tuples that do not hold for the positive
statement, thus the negation of the statement.

The one important exception to the negation logic is when the result of the positive logic returns
no tuples. It seems that in this case we should subtract the empty set from the Cartesian product,
which would indicate that every combination of specific occurrences is valid. While this is true
we also need to account for the case where a negated clause contains references to specific
occurrences that are not referenced in positive statements. If the patient record does not contain
any entries that align with a specific occurrence that is only negated, the result of the Cartesian
product would be the empty set. This would cause us to subtract the empty set from the empty
set, which would result in the empty set. This is not the desired result. Instead, if the specific
context resulting from the positive evaluation of a negated statement contains no rows, that
context should be negated to a context that contains one tuple with the ANY indicator specified
for each column of that tuple across all specific occurrences.

The benefit to this approach is that it allows specific occurrences that only exist in negated
statements to evaluate properly. Consider the following example:

AND: "Occurrence A of Procedure, Performed: X" during "The measurement
Period"
AND NOT: "Occurrence B of Procedure, Performed: X" <= 60 days SBS of
"Occurrence A of Encounter, Performed: X"

Occurrence A of the encounter is referenced with positive statements within the measure logic.
Occurrence B of the encounter is only referenced in an AND NOT statement and requires that
there is not an Occurrence B of the encounter within 60 days of Occurrence A. For this logic, we
want to accept patients that have just a single encounter during the measurement period. If we
try to calculate the Cartesian product across Occurrence A and Occurrence B of the encounter for
a patient with a single encounter, we will get the empty set for the Cartesian product. In other
words, there is no viable combination of Occurrence A and Occurrence B for the patient record.
Since the measure logic is verifying that Occurrence B does not exist, not having a viable
Occurrence B needs to evaluate to true. Thus if we negate the empty set to a tuple containing the
ANY indicator for Occurrence A and Occurrence B, this will resolve properly when this tuple is
intersected with other tuples as the calculation proceeds. If the positive evaluation of a statement
results in the empty set, it is a viable approach to always simply negate that result to a tuple

Approved for Public Release; Distribution Unlimited. 13-1264
© 2013 The MITRE Corporation. All rights reserved

2-5

containing the ANY indicator for each column rather than calculating the Cartesian product and
doing a subtraction.

The following example illustrates an execution of logic using this approach. In this example the
logic is trying to find two heart rate physical exam findings on a patient. Both of those findings
need to have been during an Office Visit and have to have a result < 50 bpm. Additionally,
Occurrence B of the finding has to be the most recent finding that started before the start of
Occurrence A of the finding. In other words, Occurrence B has to be immediately before
Occurrence A.

OR:

AND: "Occurrence A of Physical Exam, Finding: Heart Rate (result < 50
bpm)" during "Occurrence A of Encounter, Performed: Office Visit"
AND: "Occurrence B of Physical Exam, Finding: Heart Rate (result < 50
bpm)" during "Occurrence A of Encounter, Performed: Office Visit"
AND: MOST RECENT: "Occurrence B of Physical Exam, Finding: Heart Rate" SBS
"Occurrence A of Physical Exam, Finding: Heart Rate"

Lets begin by labeling the three and statements AND 1 through AND 3. We define the logic of
these three AND statements as:

AND 1: calculates the Occurrence A HR with result < 50bpm that are during the Occurrence
A of the Encounter
AND 2: calculates the Occurrence B HR with result < 50bpm that are during the Occurrence
A of the Encounter
AND 3: calculates the most recent Occurrence B HR that start before the start of Occurrence
A HR

As mentioned above, we will calculate each of these three AND statements independently. Each
AND statement will produce a specific context. That specific context will contain a set of tuples
containing the viable set of specific occurrence instances that cause the statement to evaluate to
true. Once we have calculated the specific context for the three statements, we will then intersect
the three specific contexts in order to finish the calculation of this logical block.

In order to make this example more concrete lets identify specific occurrence events using
simple integers. We will assume those integers represent the unique ID for the events. The
events are numbered in order of occurrence, that is larger identifiers occurred later than smaller
identifiers on the timeline.

Lets imagine a patient that has 5 heart rate physical exam findings. Lets also assume for
simplicity that all findings have results < 50bpm (results > 50 will be covered later):

Heart Rate Findings:
 1,3,5,7,8

Lets also assume that the patient has a single Encounter Performed, Office Visit with the unique

Approved for Public Release; Distribution Unlimited. 13-1264
© 2013 The MITRE Corporation. All rights reserved

2-6

id ‘99’.

Office Visit:
 99

We want to begin by calculating AND 1 and AND 2. The result of the calculation will be
represented as a two dimensional array with the following structure. Each sub array will
represent a single tuple. The positions of the sub array are defined as:
 Position 1: Occurrence A of Heart Rate Finding
 Position 2: Occurrence B of Heart Rate Finding
 Position 3: Occurrence A of the Office Visit

The structure will be written as:

 [[<OccurrenceA_HR>,<OccurrenceB_HR>,<OccurrenceA_OV>],[…],[…],…]

We begin by calculating AND 1 and AND 2 and get the result:

AND 1:
 [[8,*,99],[7,* ,99],[5,* ,99],[3,* ,99],[1,* ,99]]
AND 2:
 [[*,8,99],[*,7,99],[*,5,99],[*,3,99],[*,1,99]]

The assumptions that we made earlier mean that all five heart rate readings align with the logic
of AND 1 and AND 2. As a result, we have a tuple in the resulting specific context for each of
these values. For AND 1 the heart rate entries are in position 1 and in AND 2 the entries are in
position 2. Note that the ANY indicator (‘*’), is used in position 2 of AND 1 and position 1 of
AND 2. The reason for this is that these positions represent unreferenced specific occurrences.
AND 1 references Occurrence A but not B while AND 2 references Occurrence B but not A.
The ANY indicator represents that ANY value of that occurrence is valid.

Next we need to calculate AND 3. We begin by calculating the temporal reference and then
apply the subset operator (see order of operations).

The temporal reference for AND 3 is
 (Occurrence B HR that start before the start of Occurrence A HR)

The result of this calculation is:
 [[8,7,*],[8,5,*],[8,3,*],[8,1,*],[7,5,*],[7,3,*],[7,1,*],[5,3,*],[5,1,*],[3,1,*]]

Note the ANY indication in position 3 (since the encounter is not referenced). Also note that for
each sub array above, position 2 is less than position 1. Since we are looking for Occurrence B
to start before the start of Occurrence A and position 2 represents Occurrence B and position 1
represents Occurrence A, this result represents the specific occurrence instances that hold for the
logic.

Approved for Public Release; Distribution Unlimited. 13-1264
© 2013 The MITRE Corporation. All rights reserved

2-7

Once the temporal reference has been calculated, the subset operator (“most recent”) must be
applied. Since the subset is after temporal references in the order of operations the subset
operator is applied after the calculation of the temporal reference. We are calculating the subset
on Occurrence B since it is on the left side of the evaluation in AND 3. In order to do this
calculation, we must "group" the occurrence B entries by all other entries in the tuple (in this
case Occurrence A). The reason we group the specific occurrences is that we are evaluating the
subset operator on Occurrence B given an Occurrence A value. The subset operator cannot be
calculated globally on the tuples since the set of values for Occurrence B is dependent on a
specific Occurrence A value. If the subset were calculated globally, it would be restrict the
viable set of Occurrence A values based on a calculation against Occurrence B without
considering the dependence on Occurrence A. By grouping Occurrence B by all other specific
occurrences and then applying the subset operator to each grouping of B, we are selecting the
most recent B given A.

Consider the following example:

AND: First: "Occurrence A of Physical Exam, Finding: Blood Pressure"
during "Occurrence A of Encounter, Performed: Office Visit"

In this case we want to find the first blood pressure reading that occurred during an office visit.
We cannot apply the First operator across all of the patient’s blood pressure readings. Instead,
we need to find the first blood pressure reading for each encounter. Thus, if we group the blood
pressure readings by encounter, then select the first from each of those sets, we get the correct
tuples. Remember that we will most likely be intersecting the results of this evaluation with the
results of other statements. Therefore, if we have a patient with multiple encounters that had
blood pressure readings, some of those encounters could be eliminated by additional logic. Thus
we must maintain the first blood pressure reading with its associated encounter across all viable
encounters. The tuples maintained by the specific occurrence allow us to do this. In this case, as
calculation progresses the logic may exclude either the physical exam finding or the encounter
contained in the tuples returned by this statement. Since the tuples “join” a given instance of the
physical exam finding with an instance of the encounter (identifying the finding as the first for
that encounter), excluding one will exclude the other.

Therefore, in our original example if we group the calculation of the “most recent” subset
operator we get the following set of groups:

Occurrence A=8: [8,7,*],[8,5,*],[8,3,*],[8,1,*]
Occurrence A=7: [7,5,*],[7,3,*],[7,1,*]
Occurrence A=5: [5,3,*],[5,1,*]
Occurrence A=3: [3,1,*]

Note that for each unique value of Occurrence A we have a group defined. For each of these
groups we apply the subset operator (in this case “most recent”) to the Occurrence B value in the
group. Consider the group where Occurrence A equals 8. As defined previously the integers
representing events also signify the timing of the events. Therefore the tuple where Occurrence

Approved for Public Release; Distribution Unlimited. 13-1264
© 2013 The MITRE Corporation. All rights reserved

2-8

B equals 7 is the latest, or most recent. Thus we eliminate the remaining three tuples where
Occurrence B equals 5, 3 and 1. The result of the calculation of the subset operator for each
group is the final result of AND 3 which is:

 [[8,7,*],[7,5,*],[5,3,*],[3,1,*]]

We now need to intersect the results of AND 1,2 and 3. The results we have calculated for each
statement to this point are the following:

AND 1:
 [[8,*,99],[7,* ,99],[5,* ,99],[3,* ,99],[1,* ,99]]
AND 2:
 [[*,8,99],[*,7,99],[*,5,99],[*,3,99],[*,1,99]]
AND 3:
 [[8,7,*],[7,5,*],[5,3,*],[3,1,*]]

We begin by calculating the intersection of AND 1 and AND 2. The result is the cross product
of the values with the rows where OccurrenceA == OccurrenceB are removed, I.e.,

AND 1 INTESECT AND 2:
 [[8,7,99],[8,5,99],[8,3,99],[8,1,99],[7,8,99],[7,5,99],[7,3,99],
 [7,1,99], … [1,8,99],[1,7,99],[1,5,99],[1,3,99]]

We now intersect the result of AND 3 with the intersection of AND1/AND2. Since AND3 is a
proper subset of AND1/AND2 with respect to the Heart Rate findings we get the result of AND3
returned from the intersection. The difference in the result is that the ANY indicators for the
encounter in the original AND 3 result have now been resolved as part of the intersection. The
result of the intersection is:

 [[8,7,99],[7,5,99],[5,3,99],[3,1,99]]

What this result actually means is that we have 4 viable combinations of these three specific
occurrences that hold for the measure logic. If this logic were part of a larger measure this result
would be intersected and unioned as calculation progressed though the evaluation of logical
AND and OR statements through the rest of the measure. Once the calculation reaches the
logical root of a measure population (i.e., the parent most AND or OR statement of the
Denominator, or Numerator), an evaluation needs to be done to verify that rows exist in the
specific context. If at least one row exists in the context then the specific occurrence logic holds
for that population.

Next lets remove the assumption that all heart rate values have values <50bpm. Assume that
entry 5 had a result of 75 bpm. The tuples for entry 5 would be removed from the results of
AND 1 and AND2. As a result, the intersection between AND3 and AND1/AND2 would
remove the tuples that contain entry 5 since that entry would not exist in the intersection of
AND1/AND2. The result would therefore be.

Approved for Public Release; Distribution Unlimited. 13-1264
© 2013 The MITRE Corporation. All rights reserved

2-9

 [[8,7,99],[3,1,99]]
Similarly, the assumption that we have just one encounter could also be handled. If we had
multiple encounters those values would be considered as part of the logic and intersections in
order to complete the calculation.

Using this approach to calculating specific occurrences it is possible to discretely calculate
specific occurrences using the QDM.

Approved for Public Release; Distribution Unlimited. 13-1264
© 2013 The MITRE Corporation. All rights reserved

